Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If for an A.P. a1, a2, a3, ldots, an, ldots. a1+a3+a5=-12 and a1 a2 a3=8 then the value of a2+a4+a6 equals
Q. If for an A.P.
a
1
,
a
2
,
a
3
,
…
,
a
n
,
…
.
a
1
+
a
3
+
a
5
=
−
12
and
a
1
a
2
a
3
=
8
then the value of
a
2
+
a
4
+
a
6
equals
757
124
Sequences and Series
Report Error
A
- 12
0%
B
- 16
0%
C
- 18
0%
D
- 21
100%
Solution:
Let the
1
st
5
terms of the A.P. are
se
q
SC
a
−
2
d
,
a
−
d
,
a
,
a
+
d
,
a
+
2
d
now
a
1
+
a
3
+
a
5
=
−
12
∴
3
a
=
−
12
⇒
a
=
−
4
also
a
1
⋅
a
2
⋅
a
3
=
8
(
a
−
2
d
)
(
a
−
d
)
a
=
8
−
4
(
−
4
−
2
d
)
(
−
4
−
d
)
=
8
⇒
d
=
−
3
Hence the A.P. is
2
,
−
1
,
−
4
,
−
7
,
−
10
,
−
13
,
……
Hence
a
2
+
a
4
+
a
6
=
−
21