Q.
If, for a positive integer n, the quadratic equation, x(x+1)+(x+1)(x+2)+....+(x+n−1)(x+n)=10n has two consecutive integral solutions, then n is equal to :
Rearranging equation, we get nx2+{1+3+5+....+(2n−1)}x+{1.2+2.3+...+(n−1)n}=10n ⇒nx2+n2x+3(n−1)n(n+1)=10n ⇒x2+nx+(3n2−31)=0
Given difference of roots = 1 ⇒∣α−β∣=1 ⇒ D = 1 ⇒n2−34(n2−31)=1
So, n=11