Q.
If f(x)=x+∣x∣+cos([π2]x) and g(x)=sinx (where [ ⋅] denotes the greatest integer function), then
1885
209
Continuity and Differentiability
Report Error
Solution:
f(x)=x+∣x∣+cos9x,g(x)=sinx
Since f(x) and g(x) both are continuous everywhere, f(x)+g(x) is also continuous everywhere f(x) is non-differentiable and x=0.
Hence, f(x)+g(x) is non-differentiable at x=0
Now h(x)=f(x)×g(x) =⎩⎨⎧(cos9x)(sinx),(2x+cos9x).(sinx),x<0 x≥0 ⇒h′(x) =⎩⎨⎧cosx.cos9x−9sinxsin9x,(2−9sin9x)sinx+cosx(2x+cos9x),x<0 x≥0 h′(0−)=1,h′(0+)=1 ⇒f(x)×g(x) is differentiable everywhere