Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=(xn-an/x-a) for some constant 'a', then f'(a) is
Q. If
f
(
x
)
=
x
−
a
x
n
−
a
n
for some constant
′
a
′
, then
f
′
(
a
)
is
4971
189
Limits and Derivatives
Report Error
A
1
22%
B
0
22%
C
Does not exist
47%
D
2
1
9%
Solution:
We have,
f
(
x
)
=
x
−
a
x
n
−
a
n
∴
f
′
(
x
)
=
(
x
−
a
)
2
(
x
−
a
)
d
x
d
(
x
n
−
a
n
)
−
(
x
n
−
a
n
)
d
x
d
(
x
−
a
)
=
(
x
−
a
)
2
(
x
−
a
)
{
n
x
n
−
1
}
−
(
x
n
−
a
n
)
×
1
=
(
x
−
a
)
2
n
(
x
−
a
)
x
n
−
1
−
(
x
n
−
a
n
)
∵
f
′
(
a
)
=
∞
∴
f
′
(
a
)
does not exist.