Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f (x) = x3 + bx2 + cx + d and 0 < b2 < c, then in (- ∞ , ∞)
Q. If
f
(
x
)
=
x
3
+
b
x
2
+
c
x
+
d
and
0
<
b
2
<
c
, then in
(
−
∞
,
∞
)
2595
207
IIT JEE
IIT JEE 2004
Application of Derivatives
Report Error
A
f (x) is a strictly increasing function
23%
B
f(x) has a local maxima
38%
C
f (x) is a strictly decreasing function
15%
D
f (x) is bounded
23%
Solution:
f
(
x
)
=
x
3
+
b
x
2
+
c
x
+
d
,
0
<
b
2
<
c
f
′
(
x
)
=
3
x
2
+
2
b
x
+
c
Discriminant
=
4
b
2
−
12
c
=
4
(
b
2
−
3
c
)
<
0
∴
f
′
(
x
)
>
0∀
x
∈
R
⇒
is strictly increasing
f
(
x
)
∀
x
∈
R