∵f(x)=(x−2)(x−4)(x−6)....(x−2n) Taking log on both sides, we get logf(x)=log(x−2)+log(x−4)+....+log(x−2n)
aOn differentiating w.r.t. x, we get f(x)1f(x)=(x−2)1+(x−4)1+...+(x−2n)1f(x)=(x−4)(x−6)...(x−2n)+(x−2)(x−6)....(x−2n)+.....+(x−2)(x−6)...(x−2(n−1)) ∴f(2)=(−2)(−4)....(2−2n) =(−2)n−1(1.2....(n−1))=(−2)n−1(n−1)!