Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = x2 - 2x + 4 on [1, 5], then the value of a constant c such that (f(5) - f(1)/5 - 1) = f'(c), is:
Q. If
f
(
x
)
=
x
2
−
2
x
+
4
on [1, 5], then the value of a constant c such that
5
−
1
f
(
5
)
−
f
(
1
)
=
f
′
(
c
)
, is:
2462
207
Application of Derivatives
Report Error
A
0
24%
B
1
21%
C
2
19%
D
3
37%
Solution:
Given
f
(
x
)
=
x
2
−
2
x
+
4
∴
f
′
(
x
)
=
2
x
−
2
So,
f
′
(
c
)
=
2
c
−
2
So,
2
c
−
2
=
5
−
1
f
(
5
)
−
f
(
1
)
⇒
f
(
5
)
=
(
5
)
2
−
2
(
5
)
+
4
=
19
and
f
(
1
)
=
(
1
)
2
−
2
(
1
)
+
4
=
3
⇒
2
c
−
2
=
4
19
−
3
=
4
⇒
2
c
−
6
Thus
c
=
3.