We have f(x)=e2xtanx(x+1)sinhx=(x+1)sinhxe−2xcotx ∴f′(x)=sinhxe−2xcotx+(x+1)coshxe−2xcotx +(x+1)sinxe−2x(−2)cotx+(x+1)sinhxe−2x(−cosec2x) ⇒f′(x)=(x+1)sinhxe−2xcotx [x+11+cothx−2−cotxcosec2x] ⇒f′(x)=f(x)[x+11+cothx−2−sin2xcosxsinx] ⇒f(x)f′(x)=x+11+cothx−2−2cosec2x ∴g(x)=−2(1+cosec2x)