Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = sin((π/2)[x]-x5),1 < x <2 where [x] denotes greater integer less than or equal to x, then f'(√[5](π/2)) =
Q. If
f
(
x
)
=
sin
(
2
π
[
x
]
−
x
5
)
,
1
<
x
<
2
where
[
x
]
denotes greater integer less than or equal to
x
,
then
f
′
(
5
2
π
)
=
1690
202
COMEDK
COMEDK 2010
Continuity and Differentiability
Report Error
A
5
(
2
π
)
5
4
37%
B
−
5
(
2
π
)
5
4
30%
C
0
33%
D
none of these
0%
Solution:
f
(
x
)
=
sin
(
2
π
[
x
]
−
x
5
)
=
sin
(
2
π
−
x
5
)
[
∵
1
<
x
<
2
⇒
[
x
]
=
1
]
∴
f
′
(
x
)
=
cos
(
2
π
−
x
5
)
(
−
5
x
4
)
f
′
(
5
2
π
)
=
cos
{
2
π
−
(
5
2
π
)
5
}
{
−
5
(
5
2
π
)
4
}
=
cos
(
2
π
−
2
π
)
(
−
5
(
2
π
)
5
4
)
=
−
5
(
2
π
)
5
4
(
cos
0
)
=
−
5
(
2
π
)
5
4