Q.
If f(x)=sin(cos−1(1+22x1−22x)) and its first derivative with respect to x is −abloge2 when x=1, where a and b are integers, then the minimum value of ∣a2−b2∣ is ______.
f(x)=sin(cos−1(1+22x1−22x)) at x=1;22x=4
for sin(cos−1(1+x21−x2));
Let tan−1x=θ;θ∈(−2π,2π) ∴sin(cos−1cos2θ)=sin2θ {If∴x>1⇒2π>θ>4ππ>2θ>2π} =2sinθcosθ=1+tan2θ2tanθ =1+x22x
Hence, f(x)=1+22x2⋅2x ∴f′(x)=(1+22x)(1+22x)(2.2xln2)−22x⋅2⋅ln2⋅2⋅2x ∴f1(1)=2520ln2−32ln2=−2512ln2
So, a =25,b=12 ⇒∣∣a2−b2∣∣=252−122 =625−144 =481