2146
163
AMUAMU 2012Continuity and Differentiability
Report Error
Solution:
Given, f(x)=logx{log(x)} =logxloglogx(logab=logalogb)
On differentiating w.r.t. ' x ', we get f′(x)=(logx)2logx[logx1×x1−loglogx×x1] =logx[xlogx1−xloglogx]
At x=e f′(e)=logeeloge1−elogloge =1e1−0=e1(logloge=log1=0)