Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f ( x ) is a monic polynomial function of degree 4 satisfying f ( i )=(1/ i ) for i =1,2,3,4 then
Q. If
f
(
x
)
is a monic polynomial function of degree 4 satisfying
f
(
i
)
=
i
1
for
i
=
1
,
2
,
3
,
4
then
450
133
Relations and Functions - Part 2
Report Error
A
number of zeroes at the end of f (5)! is 4.
B
number of divisors of f (5) is 8.
C
sum of even divisors of f (5) is 56.
D
sum of odd divisors of f (5) is 18.
Solution:
x
f
(
x
)
−
1
≡
(
x
−
1
)
(
x
−
2
)
(
x
−
3
)
(
x
−
4
)
(
x
−
α
)
Put
x
=
0
⇒
α
=
24
1
∴
f
(
x
)
=
x
(
x
−
1
)
(
x
−
2
)
(
x
−
3
)
(
x
−
4
)
(
x
−
24
1
)
+
1
⇒
f
(
5
)
=
5
4
×
3
×
2
×
1
×
24
119
+
1
=
24
Now verify the options