Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) = ∫ (5x8 +7x6/(x2+1+2x7)2) dx , (x ge0) and f(0) = 0, then the value of f(1) is :
Q. If
f
(
x
)
=
∫
(
x
2
+
1
+
2
x
7
)
2
5
x
8
+
7
x
6
d
x
,
(
x
≥
0
)
and
f
(
0
)
=
0
, then the value of
f
(
1
)
is :
2865
191
JEE Main
JEE Main 2019
Integrals
Report Error
A
−
2
1
15%
B
2
1
37%
C
−
4
1
22%
D
4
1
26%
Solution:
∫
(
x
2
+
1
+
2
x
7
)
2
5
x
8
+
7
x
6
d
x
=
∫
(
x
7
1
+
x
5
1
+
2
)
5
x
−
6
+
7
x
−
8
d
x
=
2
+
x
5
1
+
x
7
1
1
+
C
As
f
(
0
)
=
0
,
f
(
x
)
=
2
x
7
+
x
2
+
1
x
7
f
(
1
)
=
4
1