Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=∫ (5 x8+7 x6/(x2+1+2 x7)2) d x, and f(0)=0, then the value of f(1) is
Q. If
f
(
x
)
=
∫
(
x
2
+
1
+
2
x
7
)
2
5
x
8
+
7
x
6
d
x
, and
f
(
0
)
=
0
, then the value of
f
(
1
)
is
118
148
Integrals
Report Error
A
-1/2
B
1/4
C
1/2
D
-1/4
Solution:
f
(
x
)
=
∫
x
14
(
2
+
x
7
1
+
x
5
1
)
2
5
x
8
+
7
x
6
d
x
=
∫
(
2
+
x
7
1
+
x
5
1
)
2
x
6
5
+
x
8
7
d
x
Put,
2
+
x
7
1
+
x
5
1
=
t
⇒
f
(
x
)
=
−
∫
t
2
d
t
=
t
1
+
c
=
(
2
x
7
+
x
2
+
1
x
7
)
+
c
f
(
0
)
=
0
⇒
c
=
0
⇒
f
(
x
)
=
(
2
x
7
+
x
2
+
1
x
7
)
⇒
f
(
1
)
=
4
1