Q.
If f(x),g(x)and h(x) are three polynomials of degree 2 and Δ(x)=∣∣f(x)f′(x)f′′(x)g(x)g′(x)g′′(x)h(x)h′(x)h′′(x)∣∣ then Δ(x) is a polynomial of degree
Since f(x),g(x) and h(x) are the polynomials of degree 2, therefore f′′′(x)=g′′′(x)=h′′′(x)=0
Now, Δ(x)=∣∣f(x)f′(x)f′′(x)g(x)g′(x)g′′(x)h(x)h′(x)h′′(x)∣∣ ⇒Δ′(x)=∣∣f′(x)f′(x)f′′(x)g′(x)g′(x)g′′(x)h′(x)h′(x)h′′(x)∣∣ +∣∣f(x)f′′(x)f′′(x)g(x)g′′(x)g′′(x)h(x)h′′(x)h′′(x)∣∣ +∣∣f′′(x)f′(x)f′′′(x)g′′(x)g′(x)g′′′(x)h′′(x)h′(x)h′′′(x)∣∣ ⇒Δ′(x)=0+0+0=0 ⇒Δ(x)= constant.
Thus, Δ(x) is the polynomial of degree zero.