Given, f(x)=f′(x)+f′′(x)+f′′′(x)+…
If f(x)=ex/2
Then, f′(x)=21ex/2,f′′(x)=221⋅ex/2 f′′′(x)=231ex/2… so on ∴f(x)=f′(x)+f′′(x)+f′′′(x)+… =21ex/2+221⋅ex/2+231⋅ex/2+... and so on =ex/2(21+221+231+…) =ex/2{1−2121}=ex/2⋅(2121)=ex/2⋅1 ∴f(x)=ex/2
and f(0)=e0=1