Q.
If f(x)=cot−1(2xx−x−x), then f′(1) is equal to
2121
204
Continuity and Differentiability
Report Error
Solution:
Let f(x)=cot−1(2xx−x−x)
Take outx−x common f(x)=cot−1(2xxx2x−1)
Putxx=tanθ ∴f(x)=cot−1{2tanθtan2θ−1}=cot−1(−cot2θ) =π−cot−1(cot2θ)(∵tan2θ=1−tan2θ2tanθ) ⇒f(x)=π−2θ=π−2tan−1(xx)
Differentiate w.r.t. x, we get f′x=−1+x2x2.xx(1+logx) ∴ At x=1 f′(1)=1+1−2(1+0)=−1.