Since, f(x) is differentiable at x=4π, so λ=−2. ∴f(x)={cos2x;−2(sinx−cosx);0≤x≤4π4π<x≤2π
Clearly f′(x)<0∀x∈(0,2π).
Hence, f(x) is decreasing in (0,2π).
Applying L.M.V.T. to f(x) in [0,2π], there exist some c∈(0,2π) such that f′(c)=2π−0f(2π)−f(0)=π−2(2+1)
Also, f′(4π)=−2⇒f′(x)=−2
for unique value of c∈(0,2π).