Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=( cos -1 x)2-( sin -1 x)2 then sum of all the possible integral values of (4/π2) f(x) is
Q. If
f
(
x
)
=
(
cos
−
1
x
)
2
−
(
sin
−
1
x
)
2
then sum of all the possible integral values of
π
2
4
f
(
x
)
is
623
129
Inverse Trigonometric Functions
Report Error
A
4
B
6
C
5
D
3
Solution:
f
(
x
)
=
(
cos
−
1
x
)
2
−
(
sin
−
1
x
)
2
=
(
cos
−
1
x
+
sin
−
1
x
)
(
cos
−
1
x
−
sin
−
1
x
)
=
2
π
[
2
π
−
2
sin
−
1
x
]
f
(
x
)
=
4
π
2
−
π
sin
−
1
x
⇒
4
−
π
2
≤
f
(
x
)
≤
4
3
π
2
We know
2
−
π
≤
sin
−
1
x
≤
2
π
⇒
π
2
4
f
(
x
)
∈
[
−
1
,
3
]