Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= beginmatrix (2x-1/√1+x-1), -1 le x<∞ ,x≠ 0 k, x=0 endmatrix . is continuous everywhere, then k is equal to :
Q. If
f
(
x
)
=
{
1
+
x
−
1
2
x
−
1
,
k
,
−
1
≤
x
<
∞
,
x
=
0
x
=
0
is continuous everywhere, then k is equal to :
1621
194
KEAM
KEAM 2003
Report Error
A
2
1
lo
g
2
B
lo
g
4
C
lo
g
8
D
lo
g
2
E
none of these
Solution:
∵
f
(
x
)
=
{
1
+
x
−
1
2
x
−
1
,
k
,
x
=
0
x
=
0
∴
x
→
0
lim
1
+
x
−
1
2
x
−
1
=
x
→
0
lim
2
1
+
x
1
2
x
l
o
g
e
2
(By LHospitals rule)
=
2
lo
g
e
2
=
lo
g
e
4
∵
f
(
x
)
is continuous at
k
=
0
∴
x
→
0
lim
f
(
x
)
=
f
(
0
)
⇒
lo
g
e
4
=
k