Q.
If f(x)={a+tan−1(x−b)2x;x≥1;x<1 is differentiable at x=1, then 4a−b can be
1629
189
NTA AbhyasNTA Abhyas 2020Continuity and Differentiability
Report Error
Solution:
Also f(x) must be continuous at x=1 ∴f(1−)=f(1+)=f(1) 21=a+(tan)−1(1−b)…(i) f′(x)={1+(x−b)2121;;x≥1x<1
Now for f(x) to be differentiable at x=1 f′(1−)=f′(1+) 1+(1−b)21=21⇒1+(1−b)2=2 ⇒b=2 or 0…(ii)
From equation (i) and (ii) , we get 21=a±4π⇒a=21−4π or 21+4π (a,b)≡(21−4π,0) or (21+4π,2)
Hence, 4a−b=2−π,π