Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x) be differentiable function and curve y=f(x) passes through (1,1) and satisfies the relation 2 f(x+y)+f(x-y)+3 y2=3 f(x)+2 x y, then displaystyle lim x arrow 1 (f(x)-1/x-1) is equal to
Q. If
f
(
x
)
be differentiable function and curve
y
=
f
(
x
)
passes through
(
1
,
1
)
and satisfies the relation
2
f
(
x
+
y
)
+
f
(
x
−
y
)
+
3
y
2
=
3
f
(
x
)
+
2
x
y
, then
x
→
1
lim
x
−
1
f
(
x
)
−
1
is equal to
279
155
NTA Abhyas
NTA Abhyas 2022
Report Error
A
3
B
0
C
2
D
1
Solution:
Put
x
=
1
,
y
=
h
in the relation
2
(
h
f
(
1
+
h
)
−
f
(
1
)
)
−
−
h
(
f
(
1
−
h
)
−
f
(
1
)
)
+
3
h
=
2
take limit
h
→
0
2
f
′
(
1
)
−
f
′
(
1
)
=
2
⇒
f
′
(
1
)
=
2