P(x)=f(x3)+xg(x3) P(1)=f(1)+g(1)…(1)
Now P(x) is divisible by x2+x+1 ⇒P(x)=Q(x)(x2+x+1) P(w)=0=P(w2) where w,w2 are non-real cube
roots of units P(x)=f(x3)+xg(x3) P(w)=f(w3)+wg(w3)=0 f(1)+wg(1)=2…(2) P(w2)=f(w6)+w2g(w6)=0 f(1)+w2g(1)=0…(3) (2)+(3) ⇒2f(1)+(w+w2)g(1)=0 2f(1)=g(1)…(4) (2)−(3) ⇒(w−w2)g(1)=0 g(1)=0=f(1) from (4)
from (1) P(1)=f(1)+g(1)=0