Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)= begincases (8x-4x-2x+1/x2), textif x> 0 [2ex] e x sin x+π x +λ textln 4, textif x ≤ 0 endcases is continuous at x = 0. Then, the value of λ is
Q. If
f
(
x
)
=
⎩
⎨
⎧
x
2
8
x
−
4
x
−
2
x
+
1
,
e
x
s
in
x
+
π
x
+
λ
ln
4
,
if
x
>
0
if
x
≤
0
is continuous at
x
=
0
. Then, the value of
λ
is
1597
221
Continuity and Differentiability
Report Error
A
4
lo
g
e
2
15%
B
2
lo
g
e
2
25%
C
lo
g
e
2
47%
D
None of these
12%
Solution:
f
(
0
)
=
0
+
0
+
λ
ln
4
=
λ
ln
4
…
(
1
)
R
.
H
.
L
.
=
x
→
0
+
lim
f
(
x
)
=
h
→
0
lim
f
(
0
+
h
)
=
h
→
0
lim
h
2
8
h
−
4
h
−
2
h
+
1
h
=
h
→
0
lim
h
⋅
h
(
4
h
−
1
)
(
2
h
−
1
)
=
h
→
0
lim
(
h
4
k
−
1
)
h
→
0
lim
(
h
2
h
−
1
)
=
ln
4
⋅
ln
2
d
o
t
s
(
2
)
∴
f
(
0
)
=
R
.
H
.
L
.
⇒
λ
=
ln
2