Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f (x) = 3x4 + 4x3 - 12x2 + 12, then f (x) is
Q. If
f
(
x
)
=
3
x
4
+
4
x
3
−
12
x
2
+
12
, then f (x) is
1448
212
Application of Derivatives
Report Error
A
increasing in
(
−
∞
,
−
2
)
and in (0, 1)
21%
B
increasing in ( - 2, 0) and in
(
1
,
∞
)
42%
C
decreasing in ( - 2, 0) and in (0,1)
28%
D
decreasing in
(
−
∞
,
−
2
)
and in
(
1
,
∞
)
9%
Solution:
Given :
f
(
x
)
=
3
x
4
+
4
x
3
−
12
x
2
+
12
Differentiating with respect to x, we get
f
′
(
x
)
=
12
x
3
+
12
x
2
−
24
x
For f (x) to be increasing
f '(x) > 0
⇒
12
x
3
+
12
x
2
−
24
x
>
0
⇒
12
x
(
x
2
+
x
−
2
)
>
0
⇒
12
x
(
x
−
1
)
(
x
+
2
)
>
0
⇒
x
(
x
−
1
)
(
x
+
2
)
>
0
⇒
−
2
<
x
<
0
or
x
>
1