In the neighbourhood of x=3π , we know, (2sinx−1)>0 ⇒f(x)=∣(2sinx−1)−2cotx∣
Now, for the neighbourhood of x=3π 2sinx−1−2cotx=2(23)−1−(3)2=33−2−1 =31−1<0 ∴f(x)=(2cotx)−(2sinx−1)
Now, f′(x)=2(−cosec2x)−2cosx f′(3π)=2(−32)2−2(21) =234−1=35