Given f(x)=10x+10−x10x−10−x+2
Let f(x)=y ⇒y=10x+10−x10x−10−x+2⇒1y−2=10x+10−x10x−10−x
Applying componendo and dividendo on both sides, we get (y−2)−1(y−2)+1=(10x−10−x)−(10x+10−x)(10x−10−x)+(10x+10−x)⇒y−3y−1=−10−x10x⇒3−yy−1=102x
Taking log10 on both sides, we get log10(3−yy−1)=log10(10)2x⇒log10(3−yy−1)=2x[∵log(a)m=mlog(a)&logaa=1,a=1]⇒x=21log10(3−yy−1)
For f−1(x), replacing x→f−1(x)&y→x, we get f−1(x)=21log10(3−xx−1)