Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(x)=1-x+x2-x3...-x99+x100, then f'(1) is equal to
Q. If
f
(
x
)
=
1
−
x
+
x
2
−
x
3
...
−
x
99
+
x
100
, then
f
′
(
1
)
is equal to
6684
190
Limits and Derivatives
Report Error
A
150
17%
B
−
50
23%
C
−
150
19%
D
50
40%
Solution:
We have,
f
(
x
)
=
1
−
x
+
x
2
−
x
3
...
−
x
99
+
x
100
…
(
i
)
Differentiating
(
i
)
w.r.t.
x
, we get
f
′
(
x
)
=
0
−
1
+
2
x
−
3
x
2
+
...
−
99
x
98
+
100
x
99
⇒
f
′
(
x
)
=
−
1
+
2
x
−
3
x
2
+
...
−
99
x
98
+
100
x
99
∴
f
′
(
1
)
=
−
1
+
2
−
3
+
...
−
99
+
100
=
(
−
1
−
3
−
5...
−
99
)
+
(
2
+
4
+
...
+
100
)
=
−
(
1
+
3
+
5
+
...
+
99
)
+
(
2
+
4
+
...
+
100
)
=
−
2
50
{
2
+
(
49
×
2
)
}
+
2
50
{
(
2
×
2
)
+
(
49
×
2
)
}
=
−
2500
+
2550
=
50