Q.
If f(x)=⎩⎨⎧x21−cos4x,16+x−4x,a,x<0x>0x=0
is continuous at x=0, then a=
2902
208
Continuity and Differentiability
Report Error
Solution:
Since f(x) is continuous at x=0 ∴L.H.L. at x=0=f(0) = R.H.L. at x=0 x→0limx21−cos4x=a =x→0lim16+x−4x x→0lim2x4sin4x=a =x→0lim16+x+4 x→0lim4x4sin4x×2x4x=a =x→0lim16+x+4 ∴8=a=8