f(x)[(f(x)6+1]=x f(0)[(f(0))6+1]=0⇒f(0)=0 and 7(f(x))6⋅f′(x)+f′(x)=1 ⇒f′(x)[7(f(x))6+1]=1 ⇒f′(x)>0∀x∈R
Hence f(x) is increasing function ∀x∈R so there exists an inverse of f(x) such that f−1(0)=0 ⇒x7+x=f−1(x) ⇒0∫2(x7+x)dx=8x8+2x2∣∣02=2+1=3
Now, we know that 0∫af(x)dx+0∫1(2)f−1(x)dx=af(a) Hence 0∫3f(x)dx+0∫1(3)f−1(x)dx=3f(3) 0∫3f(x)dx=3f(3)−0∫1(3)(x7+x)dx 0∫3f(x)dx=8f(3)[83−(f(3))7−4f(3)]