Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f is differentiable, f(x+y)=f(x) f(y) for all x, y ∈ I R, f(3)=3, f prime(0)=11, then f prime(3)=
Q. If
f
is differentiable,
f
(
x
+
y
)
=
f
(
x
)
f
(
y
)
for all
x
,
y
∈
I
R
,
f
(
3
)
=
3
,
f
′
(
0
)
=
11
, then
f
′
(
3
)
=
1500
177
TS EAMCET 2017
Report Error
A
11
3
0%
B
3
11
0%
C
8
0%
D
33
100%
Solution:
We have,
f
(
x
+
y
)
=
f
(
x
)
f
(
y
)
differentiate with respect to
x
,
y
as constant, we get
f
′
(
x
+
y
)
=
f
′
(
x
)
f
(
y
)
Put
x
=
0
,
y
=
3
, we get
f
′
(
0
+
3
)
=
f
′
(
0
)
f
(
3
)
⇒
f
′
(
3
)
=
f
′
(
0
)
⋅
f
(
3
)
⇒
f
′
(
3
)
=
11
×
3
=
33
[
∵
f
′
(
0
)
=
11
,
f
(
3
)
=
3
]