Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f is a real-valued differentiable function satisfying | f (x)-f (y)| le (x-y)2, x, y ϵ R and f (0)=0, then f(1) equals :
Q. If
f
is a real-valued differentiable function satisfying
∣
f
(
x
)
−
f
(
y
)
∣
≤
(
x
−
y
)
2
,
x
,
y
ϵ
R
and
f
(
0
)
=
0
,
then
f
(
1
)
equals :
2420
204
AIEEE
AIEEE 2005
Continuity and Differentiability
Report Error
A
1
35%
B
2
12%
C
0
43%
D
−
1
10%
Solution:
x
→
y
lim
∣
x
−
y
∣
∣
f
(
x
)
−
f
(
y
)
∣
≤
x
→
y
lim
∣
x
−
y
∣
⇒
∣
f
′
(
y
)
∣
≤
0
⇒
f
′
(
y
)
=
0
⇒
f
(
y
)
=
constant
as
f
(
0
)
=
0
⇒
f
(
y
)
=
0
⇒
f
(
1
)
=
0