Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f(a + b +1 - x) = f (x), for a ll x, where a and b are fixed positive real numbers, then (1/a+b) ∫ba x(f(x)+f(x+1))dx is equal to :
Q. If
f
(
a
+
b
+
1
−
x
)
=
f
(
x
)
, for a ll x, where a and b are fixed positive real numbers, then
a
+
b
1
∫
a
b
x
(
f
(
x
)
+
f
(
x
+
1
)
)
d
x
is equal to :
2602
246
JEE Main
JEE Main 2020
Integrals
Report Error
A
∫
a
−
1
b
−
1
f
(
x
)
d
x
B
∫
a
+
1
b
+
1
f
(
x
+
1
)
d
x
C
∫
a
−
1
b
−
1
f
(
x
+
1
)
d
x
D
∫
a
+
1
b
+
1
f
(
x
)
d
x
Solution:
f
(
x
+
1
)
=
f
(
a
+
b
−
x
)
I
=
(
a
+
b
)
1
∫
a
b
x
f
(
x
)
+
f
(
x
+
1
)
d
x
.....
(
1
)
I
=
(
a
+
b
)
1
∫
a
b
(
a
+
b
−
x
)
(
f
(
x
+
1
)
+
f
(
x
)
)
d
x
...
(
2
)
from
(
1
)
and
(
2
)
2
I
=
∫
a
b
(
f
(
x
)
+
f
(
x
+
1
)
)
d
x
2
I
=
∫
a
b
f
(
a
+
b
−
x
)
d
x
+
∫
a
b
f
(
x
+
1
)
d
x
2
I
=
∫
a
b
f
(
x
+
1
)
d
x
⇒
I
=
∫
a
b
f
(
x
+
1
)
d
x
=
∫
a
+
1
b
+
1
f
(
x
)
d
x
OR
I
=
(
a
+
b
)
1
∫
a
b
x
f
(
x
)
+
f
(
x
+
1
)
d
x
.....
(
1
)
I
=
(
a
+
b
)
1
∫
a
b
(
a
+
b
−
x
)
(
f
(
a
+
b
−
x
)
+
f
(
a
+
b
+
1
−
x
)
)
d
x
I
=
(
a
+
b
)
1
∫
a
b
(
a
+
b
−
x
)
(
f
(
x
+
1
)
+
f
(
x
)
)
d
x
...
(
2
)
equation
(
1
)
+
(
2
)
2
I
=
(
a
+
b
)
1
∫
a
b
(
a
+
b
)
(
f
(
x
+
1
)
+
f
(
x
)
)
d
x
I
=
2
1
[
∫
a
b
f
(
x
+
1
)
d
x
+
∫
a
b
f
(
x
)
d
x
]
=
2
1
[
∫
a
b
f
(
x
)
d
x
+
∫
a
b
f
(
x
)
d
x
]
I
=
∫
a
b
f
(
x
)
d
x
Let
x
=
T
+
1
=
∫
a
−
1
b
−
1
f
(
x
+
1
)
d
x