Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f:[-6,6] arrow R is defined by f(x)=x2-3 for x ∈ R, then ( fofof )(-1)+( fofof)(0)+(fofof)(1) is equal to
Q. If
f
:
[
−
6
,
6
]
→
R
is defined by
f
(
x
)
=
x
2
−
3
for
x
∈
R
, then
(
f
o
f
o
f
)
(
−
1
)
+
(
f
o
f
o
f
)
(
0
)
+
(
f
o
f
o
f
)
(
1
)
is equal to
2880
229
EAMCET
EAMCET 2008
Report Error
A
f
(
4
2
)
B
f
(
3
2
)
C
f
(
2
2
)
D
f
(
2
)
Solution:
Given,
f
(
x
)
=
x
2
−
3
Now,
f
(
−
1
)
=
(
−
1
)
2
−
3
=
−
2
⇒
fof
(
−
1
)
=
f
(
−
2
)
=
(
−
2
)
2
−
3
=
1
⇒
fofof
(
−
1
)
=
f
(
1
)
=
1
2
−
3
=
−
2
Now,
f
(
0
)
=
0
2
−
3
=
−
3
⇒
fof
(
0
)
=
f
(
−
3
)
=
(
−
3
)
2
−
3
=
6
⇒
fofof
(
0
)
=
f
(
6
)
=
6
2
−
3
=
33
Again,
f
(
1
)
=
1
2
−
3
=
−
2
⇒
fof
(
1
)
=
f
(
−
2
)
=
(
−
2
)
2
−
3
=
1
⇒
fofof
(
1
)
=
(
1
)
2
−
3
=
−
2
∴
fofof
(
−
1
)
+
foof
(
0
)
+
fof
(
1
)
=
−
2
+
33
−
2
=
29
Now,
f
(
4
2
)
=
(
4
2
)
2
−
3
=
32
−
3
=
29