Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If f((3x-4/3x-4)) = x +2 ,x≠ - (4/3) and ∫ f(x) dx = A log |1 - x| + Bx + C, then the ordered pair (A, B) is equal to: (where C is a constant of integration)
Q. If
f
(
3
x
−
4
3
x
−
4
)
=
x
+
2
,
x
=
−
3
4
and
∫
f
(
x
)
d
x
=
A
lo
g
∣1
−
x
∣
+
B
x
+
C
, then the ordered pair
(
A
,
B
)
is equal to : (where
C
is a constant of integration)
4660
214
JEE Main
JEE Main 2017
Integrals
Report Error
A
(
3
8
,
3
2
)
33%
B
(
−
3
8
,
3
2
)
44%
C
(
−
3
8
,
−
3
2
)
22%
D
(
3
8
,
−
3
2
)
0%
Solution:
f
(
3
x
−
4
3
x
−
4
)
=
x
+
2
,
x
=
=
3
4
Let
3
x
+
4
3
x
−
4
=
t
3
x
−
4
=
3
t
x
+
4
t
x
=
3
−
3
t
4
t
+
4
+
2
f
(
t
)
=
3
−
3
t
10
−
2
t
f
(
t
)
=
3
x
−
3
2
x
−
10
∫
f
(
x
)
d
=
∫
3
x
−
3
2
x
−
10
d
x
=
∫
3
x
−
3
2
x
d
x
−
10
∫
3
x
−
3
d
x
=
3
2
∫
x
−
1
x
−
1
d
x
+
3
2
∫
x
−
1
d
x
−
3
10
∫
x
−
1
d
x
=
3
2
x
−
3
8
In
(
x
−
1
)
+
C