Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If e ( cos 2 x+ cos 4 x+ cos 6 x+ ldots ∞) log e 2 satisfies the equation t 2-9 t +8=0, then the value of (2 sin x/ sin x+√3 cos x)(0 < x < (π/2)) is
Q. If
e
(
c
o
s
2
x
+
c
o
s
4
x
+
c
o
s
6
x
+
…
∞
)
l
o
g
e
2
satisfies the equation
t
2
−
9
t
+
8
=
0
, then the value of
s
i
n
x
+
3
c
o
s
x
2
s
i
n
x
(
0
<
x
<
2
π
)
is
10224
175
JEE Main
JEE Main 2021
Sequences and Series
Report Error
A
2
3
0%
B
2
3
0%
C
3
0%
D
2
1
100%
Solution:
e
(
c
o
s
2
θ
+
c
o
s
4
θ
+
…
∞
)
ℓ
n
2
=
2
c
o
s
2
θ
+
c
o
s
4
θ
+
…
∞
=
2
c
o
t
2
θ
Now
t
2
−
9
t
+
9
=
0
⇒
t
=
1
,
8
⇒
2
c
o
t
2
θ
=
1
,
8
⇒
cot
2
θ
=
0
,
3
0
<
θ
<
2
π
⇒
cot
θ
=
3
⇒
s
i
n
θ
+
3
s
i
n
θ
2
s
i
n
θ
=
1
+
3
c
o
t
θ
2
=
4
2
=
2
1