Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If eA is defined as eA=I+A+(A2/2 !)+ ldots ldots =(1/2)[ f(.x.) g(.x.) g(.x.) f(.x.) ] where A=[ x x x x ] and 0 < x < 1 I is an identity matrix. Then displaystyle ∫ 01(g (. x .)/f (. x .))dx is equal to
Q. If
e
A
is defined as
e
A
=
I
+
A
+
2
!
A
2
+
……
=
2
1
[
f
(
x
)
g
(
x
)
g
(
x
)
f
(
x
)
]
where
A
=
[
x
x
x
x
]
and
0
<
x
<
1
I is an identity matrix. Then
∫
0
1
f
(
x
)
g
(
x
)
d
x
is equal to
183
177
NTA Abhyas
NTA Abhyas 2022
Report Error
A
l
n
(
2
e
+
e
−
1
)
B
l
n
(
e
+
e
−
1
)
C
l
n
(
e
2
+
1
)
−
l
n
2
D
none of these
Solution:
Put the
A
in given equation
2
1
[
f
(
x
)
g
(
x
)
g
(
x
)
f
(
x
)
]
=
2
1
[
e
2
x
+
1
e
2
x
−
1
e
2
x
−
1
e
2
x
+
1
]
⇒
f
(
x
)
=
e
2
x
+
1
,
g
(
x
)
=
e
2
x
−
1
∫
0
1
(
e
2
x
+
1
e
2
x
−
1
)
d
x
=
(
[
l
n
(
e
x
+
e
−
x
)
]
)
0
1
=
l
n
(
e
+
e
−
1
)
−
l
n
2