Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ ((x2 - x + 1/x2 + 1))⋅ e(cot)- 1 xdx =A(x)⋅ e(cot)- 1 x+C , where C is constant of integration, then A(x) is equal to
Q. If
∫
(
x
2
+
1
x
2
−
x
+
1
)
⋅
e
(
co
t
)
−
1
x
d
x
=
A
(
x
)
⋅
e
(
co
t
)
−
1
x
+
C
, where
C
is constant of integration, then
A
(
x
)
is equal to
31
157
NTA Abhyas
NTA Abhyas 2022
Report Error
A
−
x
B
1
−
x
C
x
D
1
+
x
Solution:
Method-I:
Differentiate both sides with respect to
x
, we get
x
2
+
1
(
x
2
+
1
)
−
x
=
x
2
+
1
(
x
2
+
1
)
A
′
(
x
)
−
A
(
x
)
∴
A
(
x
)
=
x
Ans.
Method-II:
Let
I
=
∫
(
1
+
x
2
x
2
−
x
+
1
)
⋅
e
(
co
t
)
−
1
x
d
x
Put
co
t
−
1
x
=
t
, we get
I
=
∫
e
t
(
co
tt
−
(
cosec
)
2
t
)
d
t
=
e
t
⋅
co
t
(
t
)
+
c
=
x
⋅
e
co
t
−
1
x
+
c