Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ∫ limits0π |cos x|3dx=(k + 1/k) , where k>0 , then the value of k is equal to
Q. If
0
∫
π
∣
cos
x
∣
3
d
x
=
k
k
+
1
, where
k
>
0
, then the value of
k
is equal to
261
172
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
3
Solution:
0
∫
x
∣
cos
x
∣
3
d
x
=
2
0
∫
2
π
co
s
3
x
d
x
=
2
0
∫
2
π
(
4
cos
3
x
+
3
cos
x
)
d
x
=
2
1
[
3
s
in
3
x
+
3
s
in
x
]
0
2
π
=
2
1
(
−
3
1
+
3
)
=
3
4
sq.units
=
3
3
+
1
⇒
k
=
3