Putting r = 1, 2, 3, .....n and using the formula ∑1=n,2∑r=22(n+1)n ∑(2r−1)=1+3+5+....=n2 (sum of A.P) ∑r=1nΔr=∣∣nn(n+1)n2nn2+n+1n2nn2+nn2+n+1∣∣=56
Applying C1→C1−C3,C2→C2−C3 ∣∣00−n−101−n−1nn2+nn2+n+1∣∣=56
or n (n+1) = 56 or n2 + n - 56 = 0
(n + 8) (n - 7) = 0 ⇒ n = 7 (-8 is rejected).