Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If Δ=|1 x x2 1 y y2 1 z z2| and Δ1=|1 1 1 y z z x x y x y z|, then
Q. If
Δ
=
∣
∣
1
1
1
x
y
z
x
2
y
2
z
2
∣
∣
and
Δ
1
=
∣
∣
1
yz
x
1
z
x
y
1
x
y
z
∣
∣
, then
165
150
Determinants
Report Error
A
Δ
+
Δ
1
=
1
B
Δ
−
Δ
1
=
0
C
Δ
+
Δ
+
0
D
Δ
−
Δ
1
=
1
Solution:
We have,
Δ
1
=
∣
∣
1
yz
x
1
z
x
y
1
x
y
z
∣
∣
By interchanging rows and columns, we get
Δ
1
=
∣
∣
1
1
1
yz
z
x
x
y
x
y
z
∣
∣
=
x
yz
1
∣
∣
x
y
z
x
yz
x
yz
x
yz
x
2
y
2
z
2
∣
∣
=
x
yz
x
yz
⋅
∣
∣
x
y
z
1
1
1
x
2
y
2
z
2
∣
∣
=
(
−
1
)
∣
∣
1
1
1
x
y
z
x
2
y
2
z
2
∣
∣
=
−
Δ
(interchanging
C
1
and
C
2
)
⇒
Δ
1
+
Δ
=
0