1−y21dxdy=x3−2xsin−1y 1−y21dxdy+2xsin−1y=x3
let sin−1y=t 1−y21dxdy=dxdt
I.F. =e∫2xdx=ex2 ∴ solution is given by t(ex2)=∫x3⋅ex2dx+c
let x2=t sin−1y=ex2=∫tet⋅2dt+c2ndx=dt ⇒2(sin)−1yex2=(t⋅et−∫e′dt)+2C ⇒2(sin)−1yex2=(x2−1)ex2+K ⇒2(sin)−1y=(x2−1)+Ke−x2