Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (d/d x)[(x+1)(x2+1)(x4+1)(x8+1)]=(15 xp-16 xq+1)(x-1)-2, then (p, q) is equal to
Q. If
d
x
d
[
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
(
x
8
+
1
)
]
=
(
15
x
p
−
16
x
q
+
1
)
(
x
−
1
)
−
2
, then
(
p
,
q
)
is equal to
1656
213
EAMCET
EAMCET 2013
Report Error
A
(12,11)
B
(15,14)
C
(16,14)
D
(16,15)
Solution:
d
x
d
[
(
x
+
1
)
(
x
2
+
1
)
(
x
4
+
1
)
(
x
8
+
1
)
]
=
(
x
−
1
)
2
(
15
x
p
−
16
x
q
+
1
)
...(i)
L
H
S
=
d
x
d
[
(
x
−
1
)
(
x
2
−
1
)
(
x
2
+
1
)
(
x
4
+
1
)
(
x
8
+
1
)
]
=
d
x
d
[
(
x
−
1
)
(
x
4
−
1
)
(
x
4
+
1
)
(
x
8
+
1
)
]
=
d
x
d
[
(
x
−
1
)
(
x
8
−
1
)
(
x
8
+
1
)
]
=
d
x
d
[
(
x
−
1
)
(
x
16
−
1
)
]
=
(
x
−
1
)
2
(
x
−
1
)
(
16
x
15
)
−
(
x
16
−
1
)
=
(
x
−
1
)
2
16
x
16
−
16
x
15
−
x
16
+
1
=
(
x
−
1
)
2
15
x
16
−
16
x
15
+
1
On comparing LHS = RHS, we get
p
=
16
and
q
=
15
∴
(
p
,
q
)
=
(
16
,
15
)