Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If cos (x-y), cos x, cos (x +y) are three distinct numbers which are in harmonic progression and cos x ≠ cos y, then 1+ cos y is equal to
Q. If
cos
(
x
−
y
)
,
cos
x
,
cos
(
x
+
y
)
are three distinct numbers which are in harmonic progression and
cos
x
=
cos
y
, then
1
+
cos
y
is equal to
1823
236
EAMCET
EAMCET 2010
Report Error
A
cos
2
x
B
−
cos
2
x
C
cos
2
x
−
1
D
cos
2
x
−
2
Solution:
cos
(
x
−
y
)
,
cos
x
,
cos
(
x
+
y
)
are in HP.
Then,
cos
x
=
c
o
s
(
x
+
y
)
+
c
o
s
(
x
−
y
)
2
c
o
s
(
x
−
y
)
c
o
s
(
x
+
y
)
cos
x
=
2
c
o
s
x
⋅
c
o
s
y
c
o
s
2
x
+
c
o
s
2
y
cos
x
=
2
c
o
s
x
⋅
c
o
s
y
2
c
o
s
2
x
+
2
c
o
s
2
y
−
2
cos
2
x
⋅
cos
y
=
cos
2
x
+
cos
2
y
−
1
cos
2
x
(
cos
y
−
1
)
=
(
cos
2
y
−
1
)
cos
2
x
(
1
−
cos
y
)
=
(
1
−
cos
2
y
)
cos
2
x
(
2
sin
2
2
y
)
=
sin
2
y
cos
2
x
(
2
sin
2
2
y
)
=
(
2
sin
2
y
⋅
cos
2
y
)
2
cos
2
x
(
2
sin
2
2
y
)
=
4
sin
2
2
y
⋅
cos
2
2
y
cos
2
x
=
(
2
cos
2
2
y
−
1
)
+
1
cos
y
+
1
=
cos
2
x
or
1
+
cos
y
=
cos
2
x