Given equation cosx+cosy+cosα=0 and sinx+siny+sinα=0
The given equation may be written as cosx+cosy=−cosα and sinx+siny=−sinα ∴2cos(2x+y)cos(2x−y)=−cosα...(i) 2sin(2x+y)cos(2x−y)=−sinα...(ii)
Divide (i) by (ii), we get 2sin(2x+y)cos(2x−y)2cos(2x+y)cos(2x−y)=sinαcosα ⇒cot(2x+y)=cotα