∵cos2x.cos22x.....cos2nx=2nsin2nxsinx
We have, 21tan2x=21cot2x−cotx and 221tan2nx=2n1cot(22x)−21cot(2x)
Similarly, 231tan(23x)=231cot(23x)−221cot....(22x)2n1tan(2nx)=2n1cot(2nx)−2n−11cot....(2n−1x)
On adding all the above results, we get 21tan2x+221tan(22x)+....+2n1tan(2nx) =2n1cot(2nx)−cotx