Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If cos θ ≠ 0 and sec θ - 1 = ( √2 - 1 ) tan θ then θ =
Q. If
cos
θ
=
0
and
sec
θ
−
1
=
(
2
−
1
)
tan
θ
then
θ
=
1817
172
AP EAMCET
AP EAMCET 2019
Report Error
A
nπ
+
8
π
,
n
∈
Z
0%
B
2
nπ
+
4
π
(
or
)
2
nπ
,
n
∈
Z
100%
C
2
nπ
+
8
π
,
n
∈
Z
0%
D
2
nπ
−
4
π
(
or
)
2
nπ
,
n
∈
Z
0%
Solution:
If
cos
θ
=
0
and
sec
θ
−
1
=
(
2
−
1
)
tan
θ
⇒
c
o
s
θ
1
−
c
o
s
θ
=
(
2
−
1
)
c
o
s
θ
s
i
n
θ
⇒
2
sin
2
2
θ
=
(
2
−
1
)
2
sin
2
θ
cos
2
θ
⇒
Either
sin
2
θ
=
0
or
tan
2
θ
=
2
−
1
⇒
Either
2
θ
=
nπ
,
n
∈
Z
or
2
θ
=
nπ
+
8
π
,
n
∈
Z
⇒
θ
=
2
nπ
+
4
π
or
2
nπ
,
n
∈
Z