It is given that cosA=−6160 and tanB=24−7 and neither A nor B is in the second quadrant, then A and B will be in third and fourth quadrant respectively.
So, 2B will be in second quadrant.
Now, tanB=−247 ⇒1−tan22B2tan2B=−247 ⇒7tan22B−48tan2B−7=0 ⇒(7tan2B+1)(tan2B−7)=0 ⇒tan2B=−71 [∵2B∈ IInd quadrant ] ∵tan(A+2B)=1−tanAtan2BtanA+tan2B =1+420116011−71
[∵cosA=−6]60 and A∈IIIrd Quadrant ∴tanA=6011] =420+1177−60=43117 ∵A∈ IIIrd quadrant and 2B∈(43π,π)
and tan(A+2B) is positive. ∴(A+2B)∈ Ist quadrant.