Q.
If C0,C1……,C2012 are binomial coefficients in the expansion of (1+x)2012 and a0,a1……a2012 are real numbers in arithmetic progression then value of a0C0−a1C1+a2C2−a3C3+…..+a2012C2012, is
a0C0−a1C1+a2C2−a2C3+……+a2012C2012 =a0(C0−C1+C2+……+C2012)−d(C1−2C2+3C3−4C4+……−2012C2012) =a0(0)−d(C1−2C2+3C3−4C4+…….−2012C2012) Now (1+x)2012=C0+C1x+C2x2+……+C2012x2012 Diff. and put x=−1 0=C1−2C2+3C3−4C4+……….−2012C2012