Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If C0,C1,C2, ldots,C15 are binomial coefficients in (1 +x )15, then (C1/C0)+2(C2/C1)+3(C3/C2)+⋅s+15(C15/C14)=
Q. If
C
0
,
C
1
,
C
2
,
…
,
C
15
are binomial coefficients in (1 +
x
)
15
, then
C
0
C
1
+
2
C
1
C
2
+
3
C
2
C
3
+
⋯
+
15
C
14
C
15
=
2821
227
KEAM
KEAM 2015
Report Error
A
60
B
120
C
64
D
124
E
144
Solution:
We know that,
n
C
I
−
1
n
C
I
=
r
n
−
(
r
−
1
)
⇒
r
⋅
n
C
I
−
1
n
C
I
=
n
+
1
−
r
⇒
∑
I
=
1
n
15
C
I
−
1
15
C
r
=
∑
I
=
1
15
(
16
−
r
)
=
16
×
15
−
2
15
×
16
=
240
−
120
=
120